Rabu, 18 Maret 2015

Matematika Dalam Sejarah

Pengertian Matematika
Matematika adalah alat yang dapat membantu memecahkan berbagai permasalahan (dalam pemerintahan, industri, sains). Sejarah matematika adalah penyelidikan terhadap asal mula penemuan di dalam matematika dansedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dimasa silam. Dalam perjalanan sejarahnya, matematika berperan membangun peradaban manusia sepanjang masa.

Kata "matematika" berasal dari kata μάθημα (máthema) dalam bahasa Yunani yang diartikan sebagai "sains, ilmu pengetahuan, atau belajar" juga μαθηματικός (mathematikós) yang diartikan sebagai "suka belajar".

Terjadi perdebatan tentang apakah objek-objek matematika seperti bilangan dan titik sudah ada di semesta, jadi ditemukan, atau ciptaan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting". Namun, walau matematika pada kenyataannya sangat bermanfaat bagi kehidupan, perkembangan sains dan teknologi, sampai upaya melestarikan alam, matematika hidup di alam gagasan, bukan di realita atau kenyataan. Dengan tepat, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan." Makna dari "Matematika tak merujuk kepada kenyataan" menyampaikan pesan bahwa gagasan matematika itu ideal dan steril atau terhindar dari pengaruh manusia. Uniknya, kebebasannya dari kenyataan dan pengaruh manusia ini nantinya justru memungkinkan penyimpulan pernyataan bahwa semesta ini merupakan sebuah struktur matematika, menurut Max Tegmark. Jika kita percaya bahwa realita di luar semesta ini haruslah bebas dari pengaruh manusia, maka harus struktur matematika lah semesta itu. (Wikipedia)
Matematika mempunyai tujuan untuk menjelaskan dan menjawab tentang kedudukandan dasar dari obyek dan metode matematika yaitu menjelaskan apakah secara ontologism obyek matematika itu ada, dan menjelaskan secara epistemologis apakah semua pernyataan matematika mempunyai tujuan dan menentukan suatu kebenaran. Mengingat bahwa hukum-hukum alam dan hukum-hukum matematikamempunyai kesamaan status, maka obyek-obyek pada dunia nyata mungkin dapatmenjadi pondasi matematika. Tetapi ini masih menjadi pertanyaan besar untukdijawab.
Maka dari itu Matematika sudah menjadi makanan pokok bagi kita semua. Nah pertanyaan nya bagaimana dengan orang awam apakah mereka tahu tentang Matematika, jawaban nya pasti mungkin mereka istilah-istilah yang baku tidak tahu. Bagi anak kecil saja yang sudah tahu sedikit banyak suatu barang yang ingin di milikinya, misalnya dia bisa membandingkan jumlah mainannya. 

Sejarah Matematika

Matematika adalahalat yang dapat membantu memecahkan berbagai permasalahan (dalam pemerintahan,industri, sains). Sejarah matematika adalah penyelidikan terhadap asalmula penemuan di dalam matematika dansedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dimasa silam. Dalam perjalanan sejarahnya, matematika berperan membangunperadaban manusia sepanjang masa.

Metode yangdigunakan adalah eksperimen atau penalaran induktif dan penalaran deduktif.Penalaran induktif adalah penarikan kesimpulan setelah melihat kasus-kasus yangkhusus. Kesimpulan penalaran induktif memiliki derajat kebenaran barangkalibenar atau tidak perlu benar.

Sebelum zaman modern danpenyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis daripengembangan matematika telah mengalami kemilau hanya di beberapa tempat.Tulisan matematika terkuno yang telah ditemukan adalah Plimpton322 (matematikaBabilonia sekitar 1900 SM), Lembaran Matematika Rhind (MatematikaMesir sekitar 2000-1800 SM) dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM).    Semua tulisan itu membahas teorema yang umumdikenal sebagai teorema Pythagoras,yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luassetelah aritmetika dasar dan geometri.

Sumbangan matematikawanYunani memurnikan metode-metode (khususnya melalui pengenalanpenalaran deduktif dan kekakuan matematikadi dalam pembuktian matematika) dan perluasan pokok bahasan matematika. Kata"matematika" itu sendiri diturunkan dari kata Yunani kuno, μάθημα(mathema), yang berarti "mata pelajaran". MatematikaCina membuat sumbangan dini, termasuk notasiposisional. Sistem bilangan Hindu-Arab dan aturanpenggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melaluikuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam. Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuanmatematika ke peradaban ini. Banyak naskah berbahasa Yunani dan Arab tentangmatematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah padapengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.

Dari zaman kuno melalui ZamanPertengahan, ledakan kreativitas matematika seringkali diikuti oleh abad-abadkemandekan. Bermula pada abad Renaisans Italia pada abad ke-16, pengembanganmatematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

A.   Secara Geografis

1. Mesopotamia
- Menentukan system bilangan pertama kali
- Menemukan system berat dan ukur 
- Tahun 2500 SM system desimal tidak lagi digunakan dan lidi diganti oleh notasi berbentukbaji

2. Babilonia
- Menggunakan sitem desimal dan π=3,125
- Penemu kalkulator pertama kali
- Mengenal geometri sebagai basis perhitungan astronomi
- Menggunakan pendekatan untuk akar kuadrat
- Geometrinya bersifat aljabaris
- Aritmatika tumbuh dan berkembang baik menjadi aljabar retoris yang berkembang
- Sudah mengenal teorema Pythagoras

3. Mesir Kuno
- Sudah mengenal rumus untuk menghitung luas dan isi
- Mengenal system bilangan dan symbol pada tahun 3100 SM
- Mengenal tripel Pythagoras
- Sitem angka bercorak aditif dan aritmatika
- Tahun 300 SM menggunakan system bilangan berbasis 10

4. Yunani Kuno
- Pythagoras membuktikan teorema Pythagoras secara matematis (terbaik)
- Pencetus awal konsep[ nol adalah Al Khwarizmi
- Archimedes mencetuskan nama parabola, yang artinya bagian sudut kanan kerucut
- Hipassus penemu bilangan irrasional
- Diophantus penemu aritmatika (pembahasan teori-teori bilangan yang isinyamerupakan pengembangan aljabar yang dilakukan dengan membuat sebuah persamaan)
- Archimedes membuat geometri bidang datar
- Mengenal bilangan prima

5. India
- Brahmagyupta lahir pada 598-660 Ad
- Aryabtha (4018 SM) menemukan hubungan keliling sebuah lingkaran
- Memperkenalkan pemakaian nol dan desimal
- Brahmagyupta menemukan bilangan negatif
- Rumus a2+b2+c2 telah ada pada “Sulbasutra”
- Geometrinya sudah mengenal tripel Pythagoras,teorema Pythagoras,transformasidan segitiga pascal
 
6. China
- Mengenal sifat-sifat segitiga siku-siku tahun 3000 SM
- Mengembangkan angka negatif, bilangan desimal, system desimal, system biner,aljabar, geometri, trigonometri dan kalkulus
- Telah menemukan metode untuk memecahkan beberapa jenis persamaan yaitupersamaan kuadrat, kubikdan qualitik
- Aljabarnya menggunakan system horner untuk menyelesaikan persamaan kuadrat

B.   Berdasarkan Tokoh

1. Thales (624-550 SM)
Dapat disebut matematikawan pertama yang merumuskan teorema atau proposisi,dimana tradisi ini menjadi lebih jelas setelah dijabarkan oleh Euclid. Landasan matematika sebagai ilmuterapan rupanya sudah diletakan oleh Thales sebelum muncul Pythagoras yangmembuat bilangan.

2. Pythagoras (582-496 SM)
Pythagoras adalah orang yang pertama kali mencetuskan aksioma-aksioma,postulat-postulat yang perlu dijabarkan ter lebih dahulu dalam mengembangkangeometri. Pythagoras bukan orang yang menemukan suatu teorema Pythagoras namundia berhasil membuat pembuktian matematis. 2 sebagai bilangan irrasional.ÖPersaudaraanPythagoras menemukan


3. Socrates (427-347 SM)
Ia merupakan seorang filosofi besar dari Yunani. Dia juga menjadi pencipta ajaranserba cita, karena itu filosofinya dinamakan idealisme. Ajarannya lahir karenapergaulannya dengan kaum sofis. Plato merupakan ahli piker pertama yangmenerima paham adanya alam bukan benda.

4. Ecluides (325-265 SM)
Euklides disebut sebagai “Bapak Geometri” karena menemuka teori bilangan dangeometri. Subyek-subyek yang dibahas adalah bentuk-bentuk, teorema Pythagoras,persamaan dalam aljabar, lingkaran, tangen,geometri ruang, teori proporsi danlain-lain. Alat-alat temuan Eukluides antara lain mistar dan jangka.

5. Archimedes (287-212 SM)
Dia mengaplikasikan prinsip fisika dan matematika. Dan juga menemukanperhitungan π (pi) dalam menghitung luas lingkaran. Ia adalah ahli matematikaterbesar sepanjang zaman dan di zaman kuno. Tiga kaaarya Archimedes membahasgeometri bidang datar, yaitu pengukuran lingkaran, kuadratur dari parabola danspiral.

6. Appolonius (262-190 SM)
Konsepnya mengenai parabola, hiperbola, dan elips banyak memberi sumbangan bagiastronomi modern. Ia merupakan seorang matematikawan tang ahli dalam geometri.Teorema Appolonius menghubungkan beberapa unsur dalam segitiga.

 7. Diophantus (250-200 SM)
Ia merupakan “Bapak Aljabar” bagi Babilonia yang mengembangkan konsep-konsep aljabar Babilonia. Seorang matematikawan Yunani yang bermukim di Iskandaria.Karya besar Diophantus berupa buku aritmatika, buku karangan pertama tentangsystem aljabar. Bagian yang terpelihara dari aritmatika Diophantus berisi pemecahan kira-kira 130 soal yang menghasilkan persamaan-persamaan tingkatpertama.

 Matematika adalah alat yang dapat membantu memecahkan berbagai permasalahan (dalam pemerintahan, industri, sains). Sejarah matematika adalah penyelidikan terhadap asal mula penemuan di dalam matematika dansedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dimasa silam. Dalam perjalanan sejarahnya, matematika berperan membangun peradaban manusia sepanjang masa.

Filsafat matematika mempunyai tujuan untuk menjelaskan dan menjawab tentang kedudukandan dasar dari obyek dan metode matematika yaitu menjelaskan apakah secara ontologisme obyek matematika itu ada, dan menjelaskan secara epistemologis apakah semua pernyataan matematika mempunyai tujuan dan menentukan suatu kebenaran. Mengingat bahwa hukum-hukum alam dan hukum-hukum matematikamempunyai kesamaan status, maka obyek-obyek pada dunia nyata mungkin dapat menjadi pondasi matematika. Tetapi ini masih menjadi pertanyaan besar untuk dijawab.

Baca Juga :
  • Matematika Dalam Sejarah Islam
  • Filsafat Matematika
Lokasi: Meulaboh, West Aceh Regency, Aceh, Indonesia
0 Comments
Tweets
Komentar

0 komentar:

Posting Komentar